Saturday, May 8, 2010

Controversial questions

The absence of privacy and anti-discrimination legal protections in most countries can lead to discrimination in employment or insurance or other misuse of personal genetic information. This raises questions such as whether genetic privacy is different from medical privacy.

1. Reproductive issues. These include the use of genetic information in reproductive decision-making and the possibility of genetically altering reproductive cells that may be passed on to future generations. For example, germline therapy forever changes the genetic make-up of an individual’s descendants. Thus, any error in technology or judgment may have far-reaching consequences. Ethical issues like designer babies and human cloning have also given rise to controversies between and among scientists and bioethicists, especially in the light of past abuses with eugenics.
2. Clinical issues. These center on the capabilities and limitations of doctors and other health-service providers, people identified with genetic conditions, and the general public in dealing with genetic information.
3. Effects on social institutions. Genetic tests reveal information about individuals and their families. Thus, test results can affect the dynamics within social institutions, particularly the family.
4. Conceptual and philosophical implications regarding human responsibility, free will vis-à-vis genetic determinism, and the concepts of health and disease.

Gene therapy

Gene therapy may be used for treating, or even curing, genetic and acquired diseases like cancer and AIDS by using normal genes to supplement or replace defective genes or to bolster a normal function such as immunity. It can be used to target somatic (i.e., body) or gametes (i.e., egg and sperm) cells. In somatic gene therapy, the genome of the recipient is changed, but this change is not passed along to the next generation. In contrast, in germline gene therapy, the egg and sperm cells of the parents are changed for the purpose of passing on the changes to their offspring.

There are basically two ways of implementing a gene therapy treatment:

1. Ex vivo, which means “outside the body” – Cells from the patient’s blood or bone marrow are removed and grown in the laboratory. They are then exposed to a virus carrying the desired gene. The virus enters the cells, and the desired gene becomes part of the DNA of the cells. The cells are allowed to grow in the laboratory before being returned to the patient by injection into a vein.
2. In vivo, which means “inside the body” – No cells are removed from the patient’s body. Instead, vectors are used to deliver the desired gene to cells in the patient’s body.

As of June 2001, more than 500 clinical gene-therapy trials involving about 3,500 patients have been identified worldwide. Around 78% of these are in the United States, with Europe having 18%. These trials focus on various types of cancer, although other multigenic diseases are being studied as well. Recently, two children born with severe combined immunodeficiency disorder (“SCID”) were reported to have been cured after being given genetically engineered cells.

Gene therapy faces many obstacles before it can become a practical approach for treating disease. At least four of these obstacles are as follows:

1. Gene delivery tools. Genes are inserted into the body using gene carriers called vectors. The most common vectors now are viruses, which have evolved a way of encapsulating and delivering their genes to human cells in a pathogenic manner. Scientists manipulate the genome of the virus by removing the disease-causing genes and inserting the therapeutic genes. However, while viruses are effective, they can introduce problems like toxicity, immune and inflammatory responses, and gene control and targeting issues. In addition, in order for gene therapy to provide permanent therapeutic effects, the introduced gene needs to be integrated within the host cell's genome. Some viral vectors effect this in a random fashion, which can introduce other problems such as disruption of an endogenous host gene.
2. High costs. Since gene therapy is relatively new and at an experimental stage, it is an expensive treatment to undertake. This explains why current studies are focused on illnesses commonly found in developed countries, where more people can afford to pay for treatment. It may take decades before developing countries can take advantage of this technology.
3. Limited knowledge of the functions of genes. Scientists currently know the functions of only a few genes. Hence, gene therapy can address only some genes that cause a particular disease. Worse, it is not known exactly whether genes have more than one function, which creates uncertainty as to whether replacing such genes is indeed desirable.
4. Multigene disorders and effect of environment. Most genetic disorders involve more than one gene. Moreover, most diseases involve the interaction of several genes and the environment. For example, many people with cancer not only inherit the disease gene for the disorder, but may have also failed to inherit specific tumor suppressor genes. Diet, exercise, smoking and other environmental factors may have also contributed to their disease.

Tuesday, May 4, 2010

Human Genome Project

The Human Genome Project is an initiative of the U.S. Department of Energy (“DOE”) that aims to generate a high-quality reference sequence for the entire human genome and identify all the human genes.
The DOE and its predecessor agencies were assigned by the U.S. Congress to develop new energy resources and technologies and to pursue a deeper understanding of potential health and environmental risks posed by their production and use. In 1986, the DOE announced its Human Genome Initiative. Shortly thereafter, the DOE and National Institutes of Health developed a plan for a joint Human Genome Project (“HGP”), which officially began in 1990.
The HGP was originally planned to last 15 years. However, rapid technological advances and worldwide participation accelerated the completion date to 2003 (making it a 13 year project). Already it has enabled gene hunters to pinpoint genes associated with more than 30 disorders.

Cloning

Cloning involves the removal of the nucleus from one cell and its placement in an unfertilized egg cell whose nucleus has either been deactivated or removed.
There are two types of cloning:
Reproductive cloning. After a few divisions, the egg cell is placed into a uterus where it is allowed to develop into a fetus that is genetically identical to the donor of the original nucleus.
Therapeutic cloning.The egg is placed into a Petri dish where it develops into embryonic stem cells, which have shown potentials for treating several ailments.
In February 1997, cloning became the focus of media attention when Ian Wilmut and his colleagues at the Roslin Institute announced the successful cloning of a sheep, named Dolly, from the mammary glands of an adult female. The cloning of Dolly made it apparent to many that the techniques used to produce her could someday be used to clone human beings. This stirred a lot of controversy because of its ethical implications.

Crop yield

Using the techniques of modern biotechnology, one or two genes(Smartstax from Monsanto in collaboration with Dow AgroSciences will use 8, starting in 2010) may be transferred to a highly developed crop variety to impart a new character that would increase its yield. However, while increases in crop yield are the most obvious applications of modern biotechnology in agriculture, it is also the most difficult one. Current genetic engineering techniques work best for effects that are controlled by a single gene. Many of the genetic characteristics associated with yield (e.g., enhanced growth) are controlled by a large number of genes, each of which has a minimal effect on the overall yield. There is, therefore, much scientific work to be done in this area.

Reduced vulnerability of crops to environmental stresses

Crops containing genes that will enable them to withstand biotic and abiotic stresses may be developed. For example, drought and excessively salty soil are two important limiting factors in crop productivity. Biotechnologists are studying plants that can cope with these extreme conditions in the hope of finding the genes that enable them to do so and eventually transferring these genes to the more desirable crops. One of the latest developments is the identification of a plant gene, At-DBF2, from Arabidopsis thaliana, a tiny weed that is often used for plant research because it is very easy to grow and its genetic code is well mapped out. When this gene was inserted into tomato and tobacco cells (see RNA interference), the cells were able to withstand environmental stresses like salt, drought, cold and heat, far more than ordinary cells. If these preliminary results prove successful in larger trials, then At-DBF2 genes can help in engineering crops that can better withstand harsh environments. Researchers have also created transgenic rice plants that are resistant to rice yellow mottle virus (RYMV). In Africa, this virus destroys majority of the rice crops and makes the surviving plants more susceptible to fungal infections.

Increased nutritional qualities

Proteins in foods may be modified to increase their nutritional qualities. Proteins in legumes and cereals may be transformed to provide the amino acids needed by human beings for a balanced diet. A good example is the work of Professors Ingo Potrykus and Peter Beyer on the so-called Golden rice (discussed below).